

JCAA/JGPP Lead-Free Solder Testing for High Performance Applications

Thermal Cycle Testing: -55°C to +125°C

Dave Hillman Rockwell Collins

Outline:

- Background
- Test Vehicle and Components
 - Thermal Cycle Protocol
 - Statistical Results
- Physical Failure Analysis Results
 - Additional Test Results

Objective:

Joint DoD-NASA-OEM project to provide baseline data to allow eventual qualification and validation of lead-free solder alloys for use in manufacture and repair of electronic equipment

Scope:

- The interconnection of components to substrates with a lead free solder alloy
- Test for functional (electrical) reliability, not integrity
- Indirectly test effectiveness of repairing Pb-containing PWBs with Pb-free solder
- Test board to reflect many of circuits now on defense/space systems

Project Participants

DoD/NASA Facilitation (originally JG-PP; now JCAA) **DoD MAJCOMs, Depot Process Owners** U.S. Original **Equipment Mfrs.** International OEMs and Industry

U.S.EPA DfE/ Univ. of

Tennessee

Materials Suppliers

and

Electronics

Lead-Free Solder **Project**

Industry Association **Experts** (NCMS, ACI)

Agencies

NASA Centers and Contractors

Test Vehicle & Solder Alloys:

- •Sn3.9Ag0.6Cu (SAC) for reflow and wave soldering
- •Sn3.4Ag1.0Cu3.3Bi (SACB) for reflow soldering
- •Sn0.7Cu0.05Ni (SNIC) for wave soldering
- •Sn37Pb (SnPb) for reflow and wave soldering
- Manufactured PWBs
- •FR4 per IPC-4101/26 with a minimum Tg of 170°C with an immersion silver surface finish.
- Reworked "Legacy" PWBs
- •FR4 per IPC-4101/21 with a minimum Tg of 140°C with a hot air, solder leveled (HASL) surface finish

Test Vehicle Components & Finishes:

Component Type	Component Finish		
	SnPb		
CLCC -20	SnAgCu		
	SnAgCuBi		
PLCC-20	Sn		
TSOP-50	SnPb		
	SnCu		
TQFP-144	Sn		
TQFP-208	NiPdAu		
BGA-225	SnPb		
	SnAgCu		
DIP-20	Sn		
	NiPdAu		
0402 Capacitor	Sn		
0805 Capacitor	Sn		
1206 Capacitor	Sn		
1206 Resistor	Sn		

Thermal Cycle Testing Methodology:

- In accordance with IPC-9701
- Temperature Extremes: -55°C and +125°C
- Temperature Ramp: 5°C-10°C per minute maximum
- Temperature Dwells: 10 minutes @ -55°C

30 minutes @ +125°C

- Continuous Monitoring with Event Detector:
 - An Event = channel resistance exceeded 300 Ω for longer than 0.2 μ sec within a 30-second period
- A failure was defined when a component either:
 - 1. 15 consecutive maximum resistance events,
 - 2. 5 consecutive detection events within 10% of current life, or
 - 3. Became electrically open

Profile Control Chart

- 4743 Total Thermal Cycles Completed
 - 12 months of Testing !!!

Component Type	Total Failures	Total Population	Percent Failured
BGA 225	257	300	85.7
CLCC 20	300	300	100
PDIP 20	24	300	8
PLCC 20	8	150	5.3
TQFP 144	136	150	90.7
TQFP 208	110	150	73.3
TSOP 50	296	300	98.7

CLCC test results - Manufactured test vehicles (170°C Tg)

 β 1=6.5409, η 1=508.6653, ρ =0.9864 β 2=5.5317, η 2=776.3182, ρ =0.9453 β 3=5.9047, η 3=716.4935, ρ =0.9326

β2=5.5317, η2=776.3182, ρ=0.9453 Key: Solder Alloy/Component Finish

CLCC test results: Legacy test vehicles (140°C Tg)

 $\beta 1=7.6691$, $\eta 1=387.3908$, $\rho=0.8914$ $\beta 3=5.6773$, $\eta 3=708.6388$, $\rho=0.9368$

β2=4.2149, η2=412.5278, ρ=0.8758 Key: Solder Alloy/Component Finish

TSOP test results: Manufactured test vehicles (170°C Tg)

 β 1=4.5501, η 1=1061.7576, ρ =0.9732 β 2=3.8599, η 2=1082.2162, ρ =0.9642

 β_3 =4.5553, η_3 =1950.6106, ρ =0.9890 Key: Solder Alloy/Component Finish

 β 4=2.2892, η 4=542.1344, ρ =0.9096 β 5=7.5694, η 5=1179.9001, ρ =0.9443

Failure Analysis Results: Components/Finishes:

Component Type	Component Finish		
	SnPb		
CLCC -20	SnAgCu		
	SnAgCuBi		
PLCC-20	Sn		
TSOP-50	SnPb		
	SnCu		
TQFP-144	Sn		
TQFP-208	NiPdAu		
BGA-225	SnPb		
	SnAgCu		
DIP-20	Sn		
	NiPdAu		
0402 Capacitor	Sn		
0805 Capacitor	Sn		
1206 Capacitor	Sn		
1206 Resistor	Sn		

Failure Analysis Results:

SEM image of TSOP component with SnCu surface finish –

ENGINEE UND

Originally soldered with SnPb (140°C Tg PWB) then manually reworked with SAC

Failure Analysis Results:

SEM image of TQFP component with Sn surface finish –

Failure Analysis Results:

SEM image of TQFP component with Sn surface finish – Originally soldered with SnPb (140°C Tg PWB)

Y:\DLK's\19005\bd58_w2.spc

Failure Analysis Results: Tin Whisker Summary

Component	Component		Typical Whisker	Typical Whisker	Maximum	
Туре	Finish	Whisker Observations	Diameter	Length	Length Observed	
TSOP -		Significant Whiskering Observed		5 - 20 μm	50 μm	
		3	•	•	•	
	SnCu	Significant Whiskering Observed	8 μm	10 - 30 μm	120 μm	
DIP	Sn	No Whiskers Observed	NA	NA	NA	
PLCC	Sn	No Whiskers Observed	NA	NA	NA	
TQFP	Sn	Sporatic Whiskering Observed	8 μm	8 - 12 μm	12 μm	
Note: Whiskers observed with severely twisted/contorted shapes or with stubby shapes						

Note: No Tin Whiskers were observed on any of the other component/surface finish combinations

Additional Thermal Cycle Results:

- Extensive Failure Analysis Effort Complete
 - FA Topics: Tin Whiskers, Pb Contamination, Tin Pest, Copper Pad Dissolution, Interface Voids, Fillet Lifting, Shrinkage Voids, Failure Crack Location, Laminate Defects, Microstructure Uniformity
- JCAA/JGPP Consortia Joint Test Report (JTP) Will Contain Final Report and Data

• Weblink:

http://www.jgpp.com/projects/projects_index.html

Questions ???

What are you doing to save time?